Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37514705

RESUMEN

Participants in trail running races must carry their equipment throughout the race. This additional load modifies running biomechanics. Novel running powermeters allow further analyses of key running metrics. This study aims to determine the acute effects of running with extra weights on running power generation and running kinematics at submaximal speed. Fifteen male amateur trail runners completed three treadmill running sessions with a weighted vest of 0-, 5-, or 10% of their body mass (BM), at 8, 10, 12, and 14 km·h-1. Mean power output (MPO), leg spring stiffness (LSS), ground contact time (GCT), flight time (FT), step frequency (SF), step length (SL), vertical oscillation (VO), and duty factor (DF) were estimated with the Stryd wearable system. The one-way ANOVA revealed higher GCT and MPO and lower DF, VO, and FT for the +10% BM compared to the two other conditions (p < 0.001) for the running speeds evaluated (ES: 0.2-7.0). After post-hoc testing, LSS resulted to be higher for +5% BM than for the +10% and +0% BM conditions (ES: 0.2 and 0.4). Running with lighter loads (i.e., +5% BM) takes the principle of specificity in trail running one step further, enhancing running power generation and LSS.


Asunto(s)
Atletas , Prueba de Esfuerzo , Humanos , Masculino , Fenómenos Biomecánicos
2.
Sensors (Basel) ; 22(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35808324

RESUMEN

Several studies have already analysed power output in running or the relation between VO2max and power production as factors related to running economy; however, there are no studies assessing the difference in power output between shod and barefoot running. This study aims to identify the effect of footwear on the power output endurance runner. Forty-one endurance runners (16 female) were evaluated at shod and barefoot running over a one-session running protocol at their preferred comfortable velocity (11.71 ± 1.07 km·h−1). The mean power output (MPO) and normalized MPO (MPOnorm), form power, vertical oscillation, leg stiffness, running effectiveness and spatiotemporal parameters were obtained using the Stryd™ foot pod system. Additionally, footstrike patterns were measured using high-speed video at 240 Hz. No differences were noted in MPO (p = 0.582) and MPOnorm (p = 0.568), whereas significant differences were found in form power, in both absolute (p = 0.001) and relative values (p < 0.001), running effectiveness (p = 0.006), stiffness (p = 0.002) and vertical oscillation (p < 0.001). By running barefoot, lower values for contact time (p < 0.001) and step length (p = 0.003) were obtained with greater step frequency (p < 0.001), compared to shod running. The prevalence of footstrike pattern significantly differs between conditions, with 19.5% of runners showing a rearfoot strike, whereas no runners showed a rearfoot strike during barefoot running. Running barefoot showed greater running effectiveness in comparison with shod running, and was consistent with lower values in form power and lower vertical oscillation. From a practical perspective, the long-term effect of barefoot running drills might lead to increased running efficiency and leg stiffness in endurance runners, affecting running economy.


Asunto(s)
Carrera , Zapatos , Fenómenos Biomecánicos , Femenino , Pie , Marcha , Humanos , Estado Nutricional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...